
JPL Publication 13-12

Characterizing Interference in
Radio Astronomy Observations
through Active and Unsupervised
Learning

G. Doran
Jet Propulsion Laboratory

National Aeronautics and

Space Administration

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

October 2013



I would like to thank my mentor Kiri Wagstaff, co-mentor David Thompson, and

the rest of the Machine Learning and Instrument Autonomy group for an excel-

lent internship experience during Summer 2012. I would also like to thank the

radio astronomers at JPL, Sarah Burke-Spolaor, Jake Hartman, Dayton Jones,

Joseph Lazio, Walid Majid, and Robert Preston for interesting discussions, guid-

ance, and feedback. Additionally, I would like to acknowledge collaborators at

the NRAO, Paul Demorest, Mike McCarty, and Mark Whitehead for numerous

conversations.

This research was carried out at the Jet Propulsion Laboratory, California Insti-

tute of Technology, under a contract with the National Aeronautics and Space

Administration.

Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not constitute or imply its

endorsement by the United States Government or the Jet Propulsion Laboratory,

California Institute of Technology.

c© 2013. All rights reserved.



Characterizing Interference in Radio Astronomy Observations

Table of Contents

1 Introduction 1

2 Background 1

3 Methods 2
3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3.2 RFI Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Discriminating Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Results and Discussion 5
4.1 General Parkes RFI Trends . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Clustering Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5 Conclusion 9

i



Characterizing Interference in Radio Astronomy Observations

1 Introduction

In the process of collecting radio signals from astronomical sources, radio astronomers
are faced with the challenge of mitigating the effects of radio frequency interference
(RFI) resulting from man-made radio sources. Examples of such sources include cell
phones, satellites, aircraft, and on-site observatory equipment [1]. As the volume of data
collected and prevalence of RFI sources increases, automated mitigation of RFI becomes
increasingly important.

Below, I describe machine learning approaches to automatic RFI detection and clas-
sification. As opposed to previous work, which tends to focus exclusively on RFI flagging
or excision [1, 2, 3], this report describes techniques that aim to provide additional in-
sight into various types and sources of RFI phenomena. The approaches investigated
use unsupervised and active learning to minimize the need for human interaction and to
allow large volumes of data to be processed efficiently.

Much of the observational data used for this project comes from the Parkes Multibeam
Pulsar Survey. However, I discuss possibilities for extending the techniques explored to
other instruments or observatories, such as the Green Bank Telescope.

2 Background

RFI mitigation involves the selection of a proper observatory location, enforcement of
policies intended to reduce nearby use of radio devices, and shielding of on-site radio-
emitting equipment [4]. However, RFI from sources such as satellites will always be
present, requiring additional measures to filter interference. Therefore, RFI mitigation
techniques are also applied at various points throughout the data collection process. In
particular, pre-correlation filtering is performed at single receivers before the signals from
multiple receivers have been correlated and integrated into a single signal. However, this
requires an algorithm that can quickly process large amounts of data with high time
resolution [3]. An alternative is to excise interference post-correlation, which allows for
more sophisticated off-line data analysis [4].

Though post-correlation RFI excision is often done manually [4], numerous techniques
exist to automatically flag or remove data thought to contain interference [1, 2, 3]. Many
existing techniques use a threshold-based approach in the time-frequency representation
of the data. Due to the various characteristics of RFI sources (e.g. short wide-band
bursts and persistent narrow-band signals), different detection and mitigation strategies
are proposed for each [2]. Accordingly, it is observed that there is no single, universal
algorithmic solution to RFI excision [5].

My project helps to close the loop between automated RFI detection and excision,
and mitigation in the field. By automatically classifying and characterizing detected RFI
events, machine learning techniques can aid experts in identifying distinct RFI sources.
Furthermore, knowing properties of events, such as the location of the source or likely
times of occurrence, provides valuable information that can be used to formulate and
prioritize mitigation strategies.

A system to detect and characterize RFI events must meet several real-world require-
ments. For example, techniques used must be scalable to large quantities of data. In
particular, event detection procedures must be completed in near real-time to keep up
with a steady stream of observational data. Furthermore, classification techniques must
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Figure 1: The configuration of the 13 beams (as projected onto the sky) of the Parkes
Multibeam Receiver.

minimize the need for human interaction, since there are too many events to be manually
labeled by an expert. Below, I describe an approach developed to achieve these goals.

3 Methods

3.1 Dataset

The data used for this project come from the Parkes Multibeam Pulsar Survey [6], carried
out at the Parkes Observatory in Australia. The instrument used for observation receives
13 “beams” of signal, depicted in Figure 1, which correspond to distinct (though adjacent)
portions of the sky [7]. Astronomical signals such as pulsars are usually only detected
in between one to three adjacent beams. However, it is not uncommon for RFI to be
present in all beams.

In the dataset, radio observations are represented as 1 bit intensity values in time-
frequency space. Therefore, an observation can be thought of as a two-dimension image
in which each pixel is either “on” or “off.” There are approximately 1000 hours (3.5 TB)
of observations, made over a period of 4.5 years from 1998 to 2002. The observations are
split across about 12, 000 sets of 13 files for each beam.

The data from the Parkes Multibeam Pulsar Survey is represented as a dynamic
spectrum, which consists of a spectrum of 96 frequency channels sampled every 125µs.
The frequency channels range from 1232.1 MHz to 1516.5 MHz spaced by 3 MHz. Some
sample observations are shown in Figure 2.

RFI comes in two major varieties, channelized and broadband. Channelized RFI is
typically present for long durations, but only in a few frequency channels. An example
can be seen around 1425 MHz in Figure 2a. Broadband RFI corresponds to events that
last for a short duration (on the order of milliseconds or less), but across many observed
frequency channels (see Figure 2b). Occasionally, several broadband bursts will occur
within a short time, such as in Figure 2c.

On the other hand, actual signals of interest, such as those from pulsars, tend to
exhibit other characteristics due to dispersion. Dispersion occurs because lower-frequency
signals travel more slowly through the interstellar medium than higher frequencies do [8],
and leads to a signal that appears curved in the time-frequency plot by the time it reaches

2



Characterizing Interference in Radio Astronomy Observations

82.300 82.303 82.305 82.308 82.310
Time (s)

1516.50

1456.50

1396.50

1336.50

1276.50

Fr
eq

ue
nc

y
(M

H
z)

(a) Channelized RFI around 1425 MHz
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(b) Broadband, short-duration RFI
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(c) An RFI event consisting of several broadband
bursts
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(d) A dispersed pulsar signal

Figure 2: Examples of RFI and astronomical signals within Parkes observations

the telescope (see Figure 2d).

3.2 RFI Detection

Because this project focuses on characterizing short, transient RFI events within Parkes
observations, a simple thresholding method (such as described in prior work [2]) is used
to identify samples in the time domain that are contaminated with RFI. First, the signal
is averaged across all beams to highlight RFI that is observed in multiple beams. Then,
for each time sample, the intensity values are averaged across all frequencies, and the
sample is flagged as an event if the average exceeds some threshold (the threshold was
set to 0.7 for this study). Flagged samples within 50 time steps (6.25 ms) of each other
are temporally grouped together as a single “event.” These parameters are arbitrary
and can be adjusted as necessary. This simple detection procedure avoids detection of
astronomical signals, which are dispersed by the interstellar medium. On the other hand,
it efficiently captures many RFI events, which are not dispersed because their sources are
located relatively close to the receiver.
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3.3 Discriminating Features

There are several features that can be used to distinguish between different RFI phenom-
ena. The first is the frequency structure of the event. Because there might be a complex
relationship between the orientation of the telescope and how the RFI is observed in each
beam, the intensities are averaged across beams to get a more stable view of which fre-
quencies are most present in the RFI. For events that last more than a single time sample,
the intensities can also be averaged across time to summarize the frequency structure of
the event. As a result, there are 96 frequency features (one for each channel) with an
average intensity value in the range [0, 1].

Another feature that is useful for characterizing RFI sources is the time of day the
event was observed. Since most RFI comes from human use of equipment, many RFI
sources should be more active during the work day. Therefore, time of day was also used
as a feature to discriminate between RFI events. To improve interpretability, all times
are converted to local time.

Finally, another source of information about RFI events is the direction the telescope
is pointing when they are observed. Due to shielding from the dish, the receiver is more
likely to detect events in front of the telescope dish than behind it. The orientation of
the telescope is described by azimuth angle and zenith angle. The azimuth angle is the
compass angle clockwise from North where the telescope is pointing. The zenith angle is
the angle the telescope makes with the line running through the center of the telescope
perpendicular to the ground. The maximum zenith angle is 60◦, since the large dish
collides with the ground at higher zenith angles. One might also expect to detect more
RFI near the horizon as the zenith angle increases.

Some care must be taken in representing the features for time and pointing direction.
Because hours of the day are cyclical, 1:00 and 23:00 are closer, for example, than 1:00
and 6:00. However, simply using time of day as a feature means that points with times
of 1:00 and 23:00 will have a larger Euclidean distance than those with times of 1:00 and
6:00, all else equal. Because algorithms like k-means (described below) use Euclidean
distance to quantify the similarity of points, a flat feature representation for time is
clearly undesirable. Therefore, times are represented as points on the unit circle in a two-
dimensional subspace of the features space. More specifically, each time is represented
using the sine and cosine of the angle that the hour hand of a 24-hour clock makes
with 0:00. Similarly, the pointing angle is represented as a point on a three-dimensional
hemisphere sitting atop the telescope. Combined with the frequency features, a total of
101 features are used to describe events.

3.4 Characterization

After RFI events have been described with appropriate features, there are several ap-
proaches that can be used to classify and categorize distinct RFI phenomena. Most
standard machine learning algorithms work using supervised learning, in which labeled
examples are used to train a classifier. Then, the trained classifier is used to label novel
events that are observed. However, there is no known prior work on automatically cat-
egorizing transient RFI events, and therefore no source of labeled examples that can be
used for training.

Alternatives to supervised learning include unsupervised learning and active learning.
Unsupervised approaches attempt to classify events based on properties of the data dis-
tribution in the feature space. For example, one common assumption is that each data
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point is drawn from one of k Gaussian distributions. The goal of algorithms such as
k-means is to infer the most likely centers of the k distributions from which the data are
drawn, given the observations [9].

To enable the scalability of unsupervised methods to handle millions of events, this
project uses the mini-batch k-means algorithm [10]. Mini-batch k-means uses a stochastic
gradient descent approach in which an approximate gradient computed from a small batch
of examples is used to optimize the objective function for determining cluster centers.

Another approach used for this project is active learning, which seeks to learn an
accurate classifier by querying a human expert for labels of the fewest number of examples
possible [11]. At each step of an iterative process, an active learning algorithm selects an
example about which it is most unsure and presents the example to a human to label.
Then, the classifier is updated with the new labeled example and the process repeats
until a suitably accurate classifier has been found.

For the querying step of active learning, there are various measures of how “unsure”
a classifier is about a data point. For this project, a multi-class support vector machine
(SVM) algorithm was used for classification. The multi-class SVM works by finding a
hyperplane in the feature space that separates each pair of classes. These hyperplanes
can be used to estimate the probability that each of the events is in one of m different
classes [12]. The event selected for querying is the one with the smallest difference between
the probability estimates for the two most likely classes. This approach is suggested by
prior work [13] because it provides a better indication that the classifier is “confused”
about an example than a measure such as entropy, which can be high even when the
classifier is relatively confident about the class label.

3.5 Implementation

The techniques described above are implemented in Python using the NumPy and SciPy

libraries [14, 15]. The detection process was performed on the Swinburne supercomputer,
and is easily parallelized across individual observation files. A tuple of the observation
identifier, start time sample, and end time sample are used to identify an event and
describe its extent within the observation. For each event, the data observed during the
event is extracted to be processed on local computers.

After features are extracted, there are used as inputs to the unsupervised and active
learning algorithms. The Mini-Batch k-means and SVM algorithms are implemented in
the scikit-learn library [16].

4 Results and Discussion

4.1 General Parkes RFI Trends

Using the techniques described in section 3.2, over 5.3 million RFI events were detected
in the Parkes Multibeam Pulsar Survey data. Of the detected events, approximately 3.4
million lasted only a single time sample (125µs). The average event duration is 15.7 time
samples (2 ms).

To investigate the occurrence of RFI at different times of day, the roughly 12, 000 files
in the dataset are treated as independent and identically distributed (i.i.d.) observations
of the RFI environment. For each file, a contamination rate is computed as the percentage
of samples that exceed the threshold for RFI detection. The rates for each observation
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Figure 3: This plot shows the distribution of contamination rates for observations made
at different hours of the day. Observations are binned within each hour and treated
as independent samples drawn from some underlying distribution. Distributions are
represented with box plots showing the median (red), quartiles (blue box), and “whiskers”
(dashed line) showing 1.5 times the inter-quartile range.

file are binned into the hour (in local time) in which the observation was made, and the
distributions of these rates for each hour are shown as box plots in Figure 3.

There is an obvious visible difference between the distribution of rates during the
work day (approximately 8:00 through 16:00) and the non-work day. Pairwise statistical
tests show that the distributions of rates during hours from 8:00 to 16:00 are different
than those from 17:00 to 7:00. However, within these blocks of hours, distributions are
not significantly different from each other (with only a few exceptions at the edge of
the workday). To test the statistical significance of these differences, a Kolmogorov–
Smirnov (K–S) test is performed between the distributions corresponding to each pair
of hours using an α = 10−18 significance level. Note that because these tests compare
distributions of rates, they are biased by the fact that rates are only measured during
periods of observations, but they are not biased by the fact that observations might be
made more frequently at different hours of the day.

A similar analysis can be used to determine whether RFI is observed with different
rates as the telescope points in different directions. In Figure 4, binning is performed
across azimuth and zenith angles, and the contamination rate is plotted radially outwards.
The radial box plots in Figure 4a show the distributions of contamination rates across
various azimuth angles, and Figure 4b shows the distribution of rates at different zenith
angles. Using a K–S test, the distribution of rates at the highest and lowest zenith angles
are similar to each other, but different from the middle zenith angles at an α = 10−3

significance level. This makes sense, since at these angles, the receiver is either not
blocked by the dish for RFI sources at the observatory, or pointing near the horizon.

To give context for the azimuthal plots, Figure 5 shows a map of the buildings at the
Parkes observatory, with Figure 4a in place of the telescope. There are higher rates of
RFI observed when the telescope is pointing towards the visitor center, parking lot, café,
and generator hut than when it points away from these buildings. These associations
are not surprising, but they reinforce the intuition that features such as time of day and
telescope pointing direction are useful for characterizing RFI sources.
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(a) Distribution of RFI rates across azimuth an-
gles
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(b) Distribution of RFI rates across zenith angles

Figure 4: Distributions of contamination rates across various telescope azimuth and zenith
angles. Observations are binned within each range of angles and the distributions are
plotted as in Figure 3.

Figure 5: A map of the Parkes observatory, with Figure 4a placed above the telescope
dish.
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4.2 Clustering Results
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Figure 6: Characteristics of an example cluster, such as the relative frequencies of events
when the telescope is pointing in different directions, or observing at various hours of the
day.

To eliminate effects of variability in temporal structure across events, the clustering
results below use features described in section 3.3 extracted from all events lasting a
single time step. As discussed in section 4.1, such events constitute approximately 65%
of all detected events.

For Mini-batch k-means, k = 50 was chosen to find 50 clusters of related events. A
large value of k was chosen to sufficiently separate distinct events sources. With a smaller
k value, some distinct sources might be grouped together into the same cluster. However,
some expert feedback is necessary to validate or refine the choice of k.

Cluster sizes range from approximately 3% of all events to 1% of events. Cluster sizes
can be used to estimate relative and absolute frequencies of events. The characteristics
of each cluster are summarized with several graphs. An example cluster is shown in
Figure 6. The top left plot shows the cluster center, which is an average across events in
the cluster of intensity values at each frequency channel. The top center plot shows the
fraction of events at each azimuth angle bin in the cluster relative to all events occurring
in that bin. Similarly, the top right plot shows the fraction of events at various zenith
angles that are in this cluster. The bottom left plot shows the relative fraction of events
within each hour occurring in the cluster. Finally, the bottom right plot shows how the
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events occur over the duration of the survey, given in terms of the number of the days
since the first observation. The blue portions of the gray bars show the fraction of events
in the cluster over days when observations were made. This particular cluster represents
nearly 2% of all events, or approximately 60, 000 events.

An expert might be able to interpret cluster statistics to determine a source of the
RFI. For example, cluster 35 seems to represent events with high intensity value across
all frequency channels except around 1500 MHz. Furthermore, the events seem to occur
most often in the morning and evening when the telescope is pointing towards the visitor
center parking lot. Therefore, one can speculate that this cluster corresponds to RFI
emitted by the spark plugs of arriving and departing vehicles. By visual inspection,
approximately 2/3 of clusters exhibit obvious patterns in either average event intensity,
time of day, or telescope direction. However, more analysis by an RFI expert is required
to say with confidence which clusters correspond to potential RFI sources.

4.3 Active Learning

The clustering results described above group events without any human intervention.
However, some input by an expert might be able to significantly improve the meaningful-
ness of grouped events. To collect expert input for RFI classification, an active learning
system as described in section 3.4 was developed using a web interface. The web interface
allows the user to access the system on a remote computer capable of efficiently processing
the millions of detected events. Screen-shots of the interface are shown in Figure 7.

There are currently no significant results to report for the active learning system,
as the process of collecting expert labels is ongoing. The labels of 31 events have been
collected on a subset of the detections. For these events, the average time to select a
label after viewing the selection page (Figure 7a) is about 5 seconds, which corresponds
to about 12 labels per minute. Therefore, the active learning system can be used to
acquire on the order of hundreds of labels in less than an hour.

4.4 Future Directions

More expert feedback is necessary to properly interpret cluster results. Similarly, expert
use of the active learning system will generate additional classification results. Class labels
will not only provide information about possible RFI sources, but inform the development
of additional techniques such as feature selection.

The general framework described above of event detection, feature extraction, and
unsupervised or active learning is modular and can be modified in several ways. First,
the process can be applied to other instruments and observatories such as the Green Bank
telescope or the Deep Space Network (DSN). Furthermore, the event detection algorithm
can be used to search for dispersed signals, since some types RFI can exhibit apparent
dispersion.

5 Conclusion

Although more expert feedback is needed, this project shows that applying machine learn-
ing techniques to detected RFI events has the potential to improve the understanding of
various RFI phenomena. Understanding characteristics of RFI provides valuable infor-
mation that can be used to formulate and prioritize mitigation strategies and optimize

9
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(a) When selecting a label for an event, the user is presented with a set of event statistics and a list of
candidate classes.

(b) As events are labeled, the classifier is retrained and the resulting classes are presented to the user.

Figure 7: These screen-shots are taken from the active learning interface for labeling RFI
events.
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observation scheduling. The techniques described above can generalize to other detection
procedures, such as those that look for dispersed signals, to explore other kinds of RFI.
A similar characterization can be performed for other instruments and observatories such
as the Green Bank or DSN Telescopes. It is my hope that this work informs and mo-
tivates an investigation of the application of machine learning approaches to other RFI
mitigation problems.
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